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7 The matrix B is given by B = ( a 1 3
2 1 −1
0 1 2

).

(i) Given that B is singular, show that a = −2
3. [3]

(ii) Given instead that B is non-singular, find the inverse matrix B−1. [4]

(iii) Hence, or otherwise, solve the equations

−x + y + 3" = 1,
2x + y − " = 4,

y + 2" = −1. [3]

8 (a) The quadratic equation x2 − 2x + 4 = 0 has roots and .

(i) Write down the values of + and . [2]

(ii) Show that 2 + 2 = −4. [2]

(iii) Hence find a quadratic equation which has roots 2 and 2. [3]

(b) The cubic equation x3 − 12x2 + ax − 48 = 0 has roots p, 2p and 3p.

(i) Find the value of p. [2]

(ii) Hence find the value of a. [2]

9 (i) Write down the matrix C which represents a stretch, scale factor 2, in the x-direction. [2]

(ii) The matrix D is given by D = ( 1 3
0 1 ). Describe fully the geometrical transformation represented

by D. [2]

(iii) The matrix M represents the combined effect of the transformation represented by C followed
by the transformation represented by D. Show that

M = ( 2 3
0 1 ) . [2]

(iv) Prove by induction that Mn = ( 2n 3(2n − 1)
0 1 ), for all positive integers n. [6]
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1 (i) Express (1 + 8i)(2 − i) in the form x + iy, showing clearly how you obtain your answer. [2]

(ii) Hence express
1 + 8i
2 + i

in the form x + iy. [3]

2 Prove by induction that, for n ≥ 1,
n

∑
r=1

r2 = 1
6n(n + 1)(2n + 1). [5]

3 The matrix M is given by M = ( 2 1 3
1 2 1
1 1 3

).

(i) Find the value of the determinant of M. [3]

(ii) State, giving a brief reason, whether M is singular or non-singular. [1]

4 Use the substitution x = u + 2 to find the exact value of the real root of the equation

x3 − 6x2 + 12x − 13 = 0. [5]

5 Use the standard results for
n

∑
r=1

r,
n

∑
r=1

r2 and
n

∑
r=1

r3 to show that, for all positive integers n,

n

∑
r=1

(8r3 − 6r2 + 2r) = 2n3(n + 1). [6]

6 The matrix C is given by C = ( 1 2
3 8 ).

(i) Find C−1. [2]

(ii) Given that C = AB, where A = (2 1
1 3

), find B−1. [5]

7 (a) The complex number 3 + 2i is denoted by w and the complex conjugate of w is denoted by w∗.
Find

(i) the modulus of w, [1]

(ii) the argument of w∗, giving your answer in radians, correct to 2 decimal places. [3]

(b) Find the complex number u given that u + 2u∗ = 3 + 2i. [4]

(c) Sketch, on an Argand diagram, the locus given by |$ + 1| = |$|. [2]
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8 The matrix T is given by T = ( 2 0
0 −2

).
(i) Draw a diagram showing the unit square and its image under the transformation represented by T.

[3]

(ii) The transformation represented by matrix T is equivalent to a transformation A, followed by a
transformation B. Give geometrical descriptions of possible transformations A and B, and state
the matrices that represent them. [6]

9 (i) Show that
1
r
− 1

r + 2
= 2

r(r + 2) . [2]

(ii) Hence find an expression, in terms of n, for

2
1 × 3

+ 2
2 × 4

+ . . . + 2
n(n + 2) . [5]

(iii) Hence find the value of

(a)
∞
∑
r=1

2
r(r + 2) , [1]

(b)
∞
∑

r=n+1

2
r(r + 2) . [2]

10 The roots of the equation

x3 − 9x2 + 27x − 29 = 0

are denoted by α, β and γ , where α is real and β and γ are complex.

(i) Write down the value of α + β + γ . [1]

(ii) It is given that β = p + iq, where q > 0. Find the value of p, in terms of α. [4]

(iii) Write down the value of αβγ . [1]

(iv) Find the value of q, in terms of α only. [5]
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1 The matrices A and B are given by A = (4 1
0 2 ) and B = ( 1 1

0 −1 ).
(i) Find A + 3B. [2]

(ii) Show that A − B = kI, where I is the identity matrix and k is a constant whose value should be
stated. [2]

2 The transformation S is a shear parallel to the x-axis in which the image of the point (1, 1) is the
point (0, 1).

(i) Draw a diagram showing the image of the unit square under S. [2]

(ii) Write down the matrix that represents S. [2]

3 One root of the quadratic equation x2 + px + q = 0, where p and q are real, is the complex number
2 − 3i.

(i) Write down the other root. [1]

(ii) Find the values of p and q. [4]

4 Use the standard results for
n

∑
r=1

r3 and
n

∑
r=1

r2 to show that, for all positive integers n,

n

∑
r=1

(r3 + r2) = 1
12n(n + 1)(n + 2)(3n + 1). [5]

5 The complex numbers 3 − 2i and 2 + i are denoted by " and w respectively. Find, giving your answers
in the form x + iy and showing clearly how you obtain these answers,

(i) 2" − 3w, [2]

(ii) (i")2, [3]

(iii)
"
w

. [3]

6 In an Argand diagram the loci C1 and C2 are given by

|"| = 2 and arg " = 1
3π

respectively.

(i) Sketch, on a single Argand diagram, the loci C1 and C2. [5]

(ii) Hence find, in the form x + iy, the complex number representing the point of intersection of
C1 and C2. [2]
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7 The matrix A is given by A = ( 2 0
0 1 ).

(i) Find A2 and A3. [3]

(ii) Hence suggest a suitable form for the matrix An. [1]

(iii) Use induction to prove that your answer to part (ii) is correct. [4]

8 The matrix M is given by M = (a 4 2
1 a 0
1 2 1

).

(i) Find, in terms of a, the determinant of M. [3]

(ii) Hence find the values of a for which M is singular. [3]

(iii) State, giving a brief reason in each case, whether the simultaneous equations

ax + 4y + 2! = 3a,
x + ay = 1,
x + 2y + ! = 3,

have any solutions when

(a) a = 3,

(b) a = 2.
[4]

9 (i) Use the method of differences to show that
n

∑
r=1
{(r + 1)3 − r3} = (n + 1)3 − 1. [2]

(ii) Show that (r + 1)3 − r3 ≡ 3r2 + 3r + 1. [2]

(iii) Use the results in parts (i) and (ii) and the standard result for
n

∑
r=1

r to show that

3
n

∑
r=1

r2 = 1
2n(n + 1)(2n + 1). [6]

10 The cubic equation x3 − 2x2 + 3x + 4 = 0 has roots α, β and γ .

(i) Write down the values of α + β + γ , αβ + βγ + γ α and αβγ . [3]

The cubic equation x3 + px2 + 10x + q = 0, where p and q are constants, has roots α + 1, β + 1 and
γ + 1.

(ii) Find the value of p. [3]

(iii) Find the value of q. [5]
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1 The matrices A and B are given by A = (2 1
3 2 ) and B = ( a −1−3 −2 ).

(i) Given that 2A + B = (1 1
3 2 ), write down the value of a. [1]

(ii) Given instead that AB = ( 7 −4
9 −7 ), find the value of a. [2]

2 Use an algebraic method to find the square roots of the complex number 15 + 8i. [6]

3 Use the standard results for
n

∑
r=1

r and
n

∑
r=1

r3 to find

n

∑
r=1

r(r − 1)(r + 1),
expressing your answer in a fully factorised form. [6]

4 (i) Sketch, on an Argand diagram, the locus given by |" − 1 + i| = √
2. [3]

(ii) Shade on your diagram the region given by 1 ≤ |" − 1 + i| ≤ √
2. [3]

5 (i) Verify that "3 − 8 = (" − 2)("2 + 2" + 4). [1]

(ii) Solve the quadratic equation "2 + 2" + 4 = 0, giving your answers exactly in the form x + iy.
Show clearly how you obtain your answers. [3]

(iii) Show on an Argand diagram the roots of the cubic equation "3 − 8 = 0. [3]

6 The sequence u1, u2, u3, . . . is defined by un = n2 + 3n, for all positive integers n.

(i) Show that un+1 − un = 2n + 4. [3]

(ii) Hence prove by induction that each term of the sequence is divisible by 2. [5]

7 The quadratic equation x2 + 5x + 10 = 0 has roots α and β .

(i) Write down the values of α + β and αβ . [2]

(ii) Show that α2 + β2 = 5. [2]

(iii) Hence find a quadratic equation which has roots
α
β and

β
α . [4]
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1 The complex number a + ib is denoted by !. Given that |!| = 4 and arg ! = 1
3π, find a and b. [4]

2 Prove by induction that, for n ≥ 1,
n

∑
r=1

r3 = 1
4n2(n + 1)2. [5]

3 Use the standard results for
n

∑
r=1

r and
n

∑
r=1

r2 to show that, for all positive integers n,

n

∑
r=1

(3r2 − 3r + 1) = n3. [6]

4 The matrix A is given by A = ( 1 1
3 5 ).

(i) Find A−1. [2]

The matrix B−1 is given by B−1 = (1 1
4 −1 ).

(ii) Find (AB)−1. [4]

5 (i) Show that
1
r
− 1

r + 1
= 1

r(r + 1) . [1]

(ii) Hence find an expression, in terms of n, for

1
2
+ 1

6
+ 1

12
+ . . . + 1

n(n + 1) . [3]

(iii) Hence find the value of
∞
∑

r=n+1

1
r(r + 1) . [3]

6 The cubic equation 3x3 − 9x2 + 6x + 2 = 0 has roots α, β and γ .

(i) (a) Write down the values of α + β + γ and αβ + βγ + γ α. [2]

(b) Find the value of α2 + β2 + γ 2. [2]

(ii) (a) Use the substitution x = 1
u

to find a cubic equation in u with integer coefficients. [2]

(b) Use your answer to part (ii) (a) to find the value of
1
α + 1

β + 1
γ . [2]
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1 The transformation S is a shear with the y-axis invariant (i.e. a shear parallel to the y-axis). It is given
that the image of the point (1, 1) is the point (1, 0).

(i) Draw a diagram showing the image of the unit square under the transformation S. [2]

(ii) Write down the matrix that represents S. [2]

2 Given that
n

∑
r=1

(ar2 + b) ≡ n(2n2 + 3n − 2), find the values of the constants a and b. [5]

3 The cubic equation 2x3 − 3x2 + 24x + 7 = 0 has roots α, β and γ .

(i) Use the substitution x = 1
u

to find a cubic equation in u with integer coefficients. [2]

(ii) Hence, or otherwise, find the value of
1

αβ + 1
βγ + 1

γ α . [2]

4 The complex number 3 − 4i is denoted by #. Giving your answers in the form x + iy, and showing
clearly how you obtain them, find

(i) 2# + 5#*, [2]

(ii) (# − i)2, [3]

(iii)
3# . [3]

5 The matrices A, B and C are given by A = ( 3
1
2
), B = ( 4

0
3
) and C = (2 4 −1). Find

(i) A − 4B, [2]

(ii) BC, [4]

(iii) CA. [2]

6 The loci C1 and C2 are given by

|#| = |# − 4i| and arg # = 1
6π

respectively.

(i) Sketch, on a single Argand diagram, the loci C1 and C2. [5]

(ii) Hence find, in the form x + iy, the complex number represented by the point of intersection of C1
and C2. [3]
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7 The matrix A is given by A = ( a 3−2 1 ).
(i) Given that A is singular, find a. [2]

(ii) Given instead that A is non-singular, find A−1 and hence solve the simultaneous equations

ax + 3y = 1,
−2x + y = −1. [5]

8 The sequence u1, u2, u3, . . . is defined by u1 = 1 and un+1 = un + 2n + 1.

(i) Show that u4 = 16. [2]

(ii) Hence suggest an expression for un. [1]

(iii) Use induction to prove that your answer to part (ii) is correct. [4]

9 (i) Show that α3 + β3 = (α + β)3 − 3αβ(α + β). [2]

(ii) The quadratic equation x2 − 5x + 7 = 0 has roots α and β . Find a quadratic equation with roots
α3 and β3. [6]

10 (i) Show that
2
r
− 1

r + 1
− 1

r + 2
= 3r + 4

r(r + 1)(r + 2) . [2]

(ii) Hence find an expression, in terms of n, for

n

∑
r=1

3r + 4
r(r + 1)(r + 2) . [6]

(iii) Hence write down the value of
∞
∑
r=1

3r + 4
r(r + 1)(r + 2) . [1]

(iv) Given that
∞
∑

r=N+1

3r + 4
r(r + 1)(r + 2) = 7

10
, find the value of N. [4]
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1 The matrix A is given by A = ( 4 1
5 2 ) and I is the 2 × 2 identity matrix. Find

(i) A − 3I, [2]

(ii) A−1. [2]

2 The complex number 3 + 4i is denoted by a.

(i) Find |a| and arg a. [2]

(ii) Sketch on a single Argand diagram the loci given by

(a) |# − a| = |a|, [2]

(b) arg(# − 3) = arg a. [3]

3 (i) Show that
1
r!

− 1(r + 1)! = r(r + 1)! . [2]

(ii) Hence find an expression, in terms of n, for

1
2!

+ 2
3!

+ 3
4!

+ . . . + n(n + 1)! . [4]

4 The matrix A is given by A = ( 3 1
0 1 ). Prove by induction that, for n ≥ 1,

An = ( 3n 1
2(3n − 1)

0 1
) . [6]

5 Find
n

∑
r=1

r2(r − 1), expressing your answer in a fully factorised form. [6]

6 The cubic equation x3 + ax2 + bx + c = 0, where a, b and c are real, has roots (3 + i) and 2.

(i) Write down the other root of the equation. [1]

(ii) Find the values of a, b and c. [6]
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7 Describe fully the geometrical transformation represented by each of the following matrices:

(i) ( 6 0
0 6 ), [1]

(ii) ( 0 1
1 0 ), [2]

(iii) ( 1 0
0 6 ), [2]

(iv) ( 0.8 0.6−0.6 0.8 ). [2]

8 The quadratic equation x2 + kx + 2k = 0, where k is a non-zero constant, has roots α and β . Find a

quadratic equation with roots
α
β and

β
α . [7]

9 (i) Use an algebraic method to find the square roots of the complex number 5 + 12i. [5]

(ii) Find (3 − 2i)2. [2]

(iii) Hence solve the quartic equation x4 − 10x2 + 169 = 0. [4]

10 The matrix A is given by A = ( a 8 10
2 1 2
4 3 6

). The matrix B is such that AB = ( a 6 1
1 1 0
1 3 0

).

(i) Show that AB is non-singular. [2]

(ii) Find (AB)−1. [4]

(iii) Find B−1. [5]
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8 (i) Show that (α − β)2 ≡ (α + β)2 − 4αβ . [2]

The quadratic equation x2 − 6kx + k2 = 0, where k is a positive constant, has roots α and β , with α > β .

(ii) Show that α − β = 4
√

2k. [4]

(iii) Hence find a quadratic equation with roots α + 1 and β − 1. [4]

9 (i) Show that
1

2r − 3
−

1
2r + 1

=
4

4r2 − 4r − 3
. [2]

(ii) Hence find an expression, in terms of n, for

n

∑
r=2

4
4r2 − 4r − 3

. [6]

(iii) Show that
∞

∑
r=2

4
4r2 − 4r − 3

=
4
3

. [1]

10 (i) Use an algebraic method to find the square roots of the complex number 2 + i
√

5. Give your
answers in the form x + iy, where x and y are exact real numbers. [6]

(ii) Hence find, in the form x + iy where x and y are exact real numbers, the roots of the equation

%4 − 4%2 + 9 = 0. [4]

(iii) Show, on an Argand diagram, the roots of the equation in part (ii). [1]

(iv) Given that α is the root of the equation in part (ii) such that 0 < arg α < 1
2π, sketch on the same

Argand diagram the locus given by |% − α | = |%|. [3]
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1 Evaluate
250

∑
r=101

r3. [3]

2 The matrices A and B are given by A = ( 3 0
0 1 ) and B = ( 5 0

0 2 ) and I is the 2 × 2 identity matrix.

Find the values of the constants a and b for which aA + bB = I. [4]

3 The complex numbers " and w are given by " = 5 − 2i and w = 3 + 7i. Giving your answers in the
form x + iy and showing clearly how you obtain them, find

(i) 4" − 3w, [2]

(ii) "*w. [2]

4 The roots of the quadratic equation x2 + x − 8 = 0 are p and q. Find the value of p + q +
1
p
+

1
q

. [4]

5 The cubic equation x3 + 5x2 + 7 = 0 has roots α, β and γ .

(i) Use the substitution x =
√

u to find a cubic equation in u with integer coefficients. [3]

(ii) Hence find the value of α2β2 + β2γ 2 + γ 2α2. [2]

6 The complex number 3 − 3i is denoted by a.

(i) Find |a| and arg a. [2]

(ii) Sketch on a single Argand diagram the loci given by

(a) |" − a| = 3
√

2, [3]

(b) arg(" − a) = 1
4
π. [3]

(iii) Indicate, by shading, the region of the Argand diagram for which

|" − a| ≥ 3
√

2 and 0 ≤ arg(" − a) ≤ 1
4
π. [3]

7 (i) Use the method of differences to show that

n

∑
r=1

{(r + 1)4 − r4} = (n + 1)4 − 1. [2]

(ii) Show that (r + 1)4 − r4 ≡ 4r3 + 6r2 + 4r + 1. [2]

(iii) Hence show that

4
n

∑
r=1

r3 = n2(n + 1)2. [6]
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2

1 Evaluate
250

∑
r=101

r3. [3]

2 The matrices A and B are given by A = ( 3 0
0 1 ) and B = ( 5 0

0 2 ) and I is the 2 × 2 identity matrix.

Find the values of the constants a and b for which aA + bB = I. [4]

3 The complex numbers " and w are given by " = 5 − 2i and w = 3 + 7i. Giving your answers in the
form x + iy and showing clearly how you obtain them, find

(i) 4" − 3w, [2]

(ii) "*w. [2]

4 The roots of the quadratic equation x2 + x − 8 = 0 are p and q. Find the value of p + q +
1
p
+

1
q

. [4]

5 The cubic equation x3 + 5x2 + 7 = 0 has roots α, β and γ .

(i) Use the substitution x =
√

u to find a cubic equation in u with integer coefficients. [3]

(ii) Hence find the value of α2β2 + β2γ 2 + γ 2α2. [2]

6 The complex number 3 − 3i is denoted by a.

(i) Find |a| and arg a. [2]

(ii) Sketch on a single Argand diagram the loci given by

(a) |" − a| = 3
√

2, [3]

(b) arg(" − a) = 1
4
π. [3]

(iii) Indicate, by shading, the region of the Argand diagram for which

|" − a| ≥ 3
√

2 and 0 ≤ arg(" − a) ≤ 1
4
π. [3]

7 (i) Use the method of differences to show that

n

∑
r=1

{(r + 1)4 − r4} = (n + 1)4 − 1. [2]

(ii) Show that (r + 1)4 − r4 ≡ 4r3 + 6r2 + 4r + 1. [2]

(iii) Hence show that

4
n

∑
r=1

r3 = n2(n + 1)2. [6]
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1 The matrix A is given by A = (a 2
3 4

) and I is the 2 × 2 identity matrix.

(i) Find A − 4I. [2]

(ii) Given that A is singular, find the value of a. [3]

2 The cubic equation 2x3 + 3x − 3 = 0 has roots α, β and γ .

(i) Use the substitution x = u − 1 to find a cubic equation in u with integer coefficients. [3]

(ii) Hence find the value of (α + 1)(β + 1)(γ + 1). [2]

3 The complex number # satisfies the equation # + 2i#* = 12 + 9i. Find #, giving your answer in the
form x + iy. [5]

4 Find
n

∑
r=1

r(r + 1)(r − 2), expressing your answer in a fully factorised form. [6]

5 (i) The transformation T is represented by the matrix ( 0 −1
1 0

). Give a geometrical description

of T. [2]

(ii) The transformation T is equivalent to a reflection in the line y = −x followed by another
transformation S. Give a geometrical description of S and find the matrix that represents S. [4]

6 One root of the cubic equation x3 + px2 + 6x + q = 0, where p and q are real, is the complex number
5 − i.

(i) Find the real root of the cubic equation. [3]

(ii) Find the values of p and q. [4]

7 (i) Show that
1
r2 −

1
(r + 1)2 ≡

2r + 1
r2(r + 1)2 . [1]

(ii) Hence find an expression, in terms of n, for
n

∑
r=1

2r + 1
r2(r + 1)2 . [4]

(iii) Find
∞

∑
r=2

2r + 1
r2(r + 1)2 . [2]

8 The complex number a is such that a2 = 5 − 12i.

(i) Use an algebraic method to find the two possible values of a. [5]

(ii) Sketch on a single Argand diagram the two possible loci given by |# − a | = |a |. [4]
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1 The matrix A is given by A = (a 2
3 4

) and I is the 2 × 2 identity matrix.

(i) Find A − 4I. [2]

(ii) Given that A is singular, find the value of a. [3]

2 The cubic equation 2x3 + 3x − 3 = 0 has roots α, β and γ .

(i) Use the substitution x = u − 1 to find a cubic equation in u with integer coefficients. [3]

(ii) Hence find the value of (α + 1)(β + 1)(γ + 1). [2]

3 The complex number # satisfies the equation # + 2i#* = 12 + 9i. Find #, giving your answer in the
form x + iy. [5]

4 Find
n

∑
r=1

r(r + 1)(r − 2), expressing your answer in a fully factorised form. [6]

5 (i) The transformation T is represented by the matrix ( 0 −1
1 0

). Give a geometrical description

of T. [2]

(ii) The transformation T is equivalent to a reflection in the line y = −x followed by another
transformation S. Give a geometrical description of S and find the matrix that represents S. [4]

6 One root of the cubic equation x3 + px2 + 6x + q = 0, where p and q are real, is the complex number
5 − i.

(i) Find the real root of the cubic equation. [3]

(ii) Find the values of p and q. [4]

7 (i) Show that
1
r2 −

1
(r + 1)2 ≡

2r + 1
r2(r + 1)2 . [1]

(ii) Hence find an expression, in terms of n, for
n

∑
r=1

2r + 1
r2(r + 1)2 . [4]

(iii) Find
∞

∑
r=2

2r + 1
r2(r + 1)2 . [2]

8 The complex number a is such that a2 = 5 − 12i.

(i) Use an algebraic method to find the two possible values of a. [5]

(ii) Sketch on a single Argand diagram the two possible loci given by |# − a | = |a |. [4]
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1 Prove by induction that, for n ≥ 1,
n

∑
r=1

r(r + 1) = 1
3n(n + 1)(n + 2). [5]

2 The matrices A, B and C are given by A = ( 1 −4 ), B = ( 5
3
) and C = ( 3 0

−2 2
). Find

(i) AB, [2]

(ii) BA − 4C. [4]

3 Find
n

∑
r=1

(2r − 1)2, expressing your answer in a fully factorised form. [6]

4 The complex numbers a and b are given by a = 7 + 6i and b = 1 − 3i. Showing clearly how you obtain
your answers, find

(i) |a − 2b | and arg(a − 2b), [4]

(ii)
b

a
, giving your answer in the form x + iy. [3]

5 (a) Write down the matrix that represents a reflection in the line y = x. [2]

(b) Describe fully the geometrical transformation represented by each of the following matrices:

(i) (5 0
0 1

), [2]

(ii) ( 1
2

1
2

√
3

−1
2

√
3 1

2

). [2]

6 (i) Sketch on a single Argand diagram the loci given by

(a) |$ − 3 + 4i | = 5, [2]

(b) |$ | = |$ − 6 |. [2]

(ii) Indicate, by shading, the region of the Argand diagram for which

|$ − 3 + 4i| ≤ 5 and |$ | ≥ |$ − 6 |. [2]

7 The quadratic equation x2 + 2kx + k = 0, where k is a non-zero constant, has roots α and β . Find a

quadratic equation with roots
α + β

α
and

α + β

β
. [7]
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8 The quadratic equation 2x2 − x + 3 = 0 has roots α and β , and the quadratic equation x2 − px + q = 0

has roots α +
1
α

and β +
1
β

.

(i) Show that p = 5
6. [4]

(ii) Find the value of q. [5]

9 The matrix M is given by M = ⎛⎜⎝a −a 1
3 a 1
4 2 1

⎞⎟⎠.

(i) Find, in terms of a, the determinant of M. [3]

(ii) Hence find the values of a for which M−1 does not exist. [3]

(iii) Determine whether the simultaneous equations

6x − 6y + " = 3k,

3x + 6y + " = 0,

4x + 2y + " = k,

where k is a non-zero constant, have a unique solution, no solution or an infinite number of
solutions, justifying your answer. [3]

10 (i) Show that
1
r
−

2
r + 1

+
1

r + 2
≡

2
r(r + 1)(r + 2)

. [2]

(ii) Hence find an expression, in terms of n, for

n

∑
r=1

2
r(r + 1)(r + 2)

. [6]

(iii) Show that
∞

∑
r=n+1

2
r(r + 1)(r + 2)

=
1

(n + 1)(n + 2)
. [3]
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8 The matrix X is given by X = ( 0 3
3 0

).

(i) The diagram in the printed answer book shows the unit square OABC. The image of the unit
square under the transformation represented by X is OA′B ′C ′. Draw and label OA′B ′C ′. [3]

(ii) The transformation represented by X is equivalent to a transformation A, followed by a
transformation B. Give geometrical descriptions of possible transformations A and B and state
the matrices that represent them. [4]

9 One root of the quadratic equation x2 + ax + b = 0, where a and b are real, is 16 − 30i.

(i) Write down the other root of the quadratic equation. [1]

(ii) Find the values of a and b. [4]

(iii) Use an algebraic method to solve the quartic equation y4 + ay2 + b = 0. [7]

10 The cubic equation x3 + 3x2 + 2 = 0 has roots α, β and γ .

(i) Use the substitution x =
1√
u

to show that 4u3 + 12u2 + 9u − 1 = 0. [5]

(ii) Hence find the values of
1

α2 +
1

β2 +
1
γ 2 and

1
α2β2 +

1
β2γ 2 +

1
γ 2α2 . [5]
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8 The matrix X is given by X = ( 0 3
3 0

).

(i) The diagram in the printed answer book shows the unit square OABC. The image of the unit
square under the transformation represented by X is OA′B ′C ′. Draw and label OA′B ′C ′. [3]

(ii) The transformation represented by X is equivalent to a transformation A, followed by a
transformation B. Give geometrical descriptions of possible transformations A and B and state
the matrices that represent them. [4]

9 One root of the quadratic equation x2 + ax + b = 0, where a and b are real, is 16 − 30i.

(i) Write down the other root of the quadratic equation. [1]

(ii) Find the values of a and b. [4]

(iii) Use an algebraic method to solve the quartic equation y4 + ay2 + b = 0. [7]

10 The cubic equation x3 + 3x2 + 2 = 0 has roots α, β and γ .

(i) Use the substitution x =
1√
u

to show that 4u3 + 12u2 + 9u − 1 = 0. [5]

(ii) Hence find the values of
1

α2 +
1

β2 +
1
γ 2 and

1
α2β2 +

1
β2γ 2 +

1
γ 2α2 . [5]
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9 The matrix X is given by X = 
a
2
1

2
a
0

9
3

−1 
.

 (i) Find the determinant of X in terms of a. [3]

 (ii) Hence find the values of a for which X is singular. [3]

 (iii) Given that X is non-singular, find X−1 in terms of a. [4]

10 The cubic equation 3x3 − 9x2 + 6x + 2 = 0 has roots α, β and γ.

 (i) Write down the values of α + β + γ, αβ + βγ + γα and αβγ. [3]

 The cubic equation x3 + ax2 + bx + c = 0 has roots α2, β2 and γ2.

 (ii) Show that c = −4
9 and find the values of a and b. [9]
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1 The complex numbers z and w are given by z = 6 – i and w = 5 + 4i. Giving your answers in the form x + iy 
and showing clearly how you obtain them, find

 (i) z + 3w, [2]

 (ii) z
w

 . [3]

2 The matrices A and B are given by A = ! 2 4
1
3" and B = ! 1 3

0
2". Find

 (i) AB, [2]

 (ii) B−1A−1. [3]

3 One root of the quadratic equation x2 + ax + b = 0, where a and b are real, is the complex number 4 – 3i. 
Find the values of a and b. [4]

4 Find   
n#

r =1
 (3r2 − 3r + 2), expressing your answer in a fully factorised form. [7]

5 Prove by induction that, for n  1, 
n#

r =1
 4×3r = 6(3n − 1). [5]

6 The quadratic equation  2x2 + x + 5 = 0  has roots α and β.

 (i) Use the substitution x = 
1

u + 1 to obtain a quadratic equation in u with integer coefficients. [3]

 (ii) Hence, or otherwise, find the value of !1α − 1" !1
β  − 1".  [3]

7 The loci C1 and C2 are given by  $ z − 3 − 4i $ = 4 and $ z $ = $ z − 8i $  respectively.

 (i) Sketch, on a single Argand diagram, the loci C1 and C2. [6]

 (ii) Hence find the complex numbers represented by the points of intersection of C1 and C2. [2]

 (iii) Indicate, by shading, the region of the Argand diagram for which

 $ z − 3 − 4i $  4 and $ z $  $ z − 8i $ . [2]

8 (i) Show that  1
r

 − 1
r + 2 ≡ 2

r(r + 2) 
. [1]

 (ii) Hence find an expression, in terms of n, for  
n#

r =1
 2
r(r + 2) 

. [6]

 (iii) Given that  
∞#

r =N+1
 

2
r(r + 2) = 11

30, find the value of N. [4]
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1 The complex numbers z and w are given by z = 6 – i and w = 5 + 4i. Giving your answers in the form x + iy 
and showing clearly how you obtain them, find

 (i) z + 3w, [2]

 (ii) z
w

 . [3]

2 The matrices A and B are given by A = ! 2 4
1
3" and B = ! 1 3

0
2". Find

 (i) AB, [2]

 (ii) B−1A−1. [3]

3 One root of the quadratic equation x2 + ax + b = 0, where a and b are real, is the complex number 4 – 3i. 
Find the values of a and b. [4]

4 Find   
n#

r =1
 (3r2 − 3r + 2), expressing your answer in a fully factorised form. [7]

5 Prove by induction that, for n  1, 
n#

r =1
 4×3r = 6(3n − 1). [5]

6 The quadratic equation  2x2 + x + 5 = 0  has roots α and β.

 (i) Use the substitution x = 
1

u + 1 to obtain a quadratic equation in u with integer coefficients. [3]

 (ii) Hence, or otherwise, find the value of !1α − 1" !1
β  − 1".  [3]

7 The loci C1 and C2 are given by  $ z − 3 − 4i $ = 4 and $ z $ = $ z − 8i $  respectively.

 (i) Sketch, on a single Argand diagram, the loci C1 and C2. [6]

 (ii) Hence find the complex numbers represented by the points of intersection of C1 and C2. [2]

 (iii) Indicate, by shading, the region of the Argand diagram for which

 $ z − 3 − 4i $  4 and $ z $  $ z − 8i $ . [2]

8 (i) Show that  1
r

 − 1
r + 2 ≡ 2

r(r + 2) 
. [1]

 (ii) Hence find an expression, in terms of n, for  
n#

r =1
 2
r(r + 2) 

. [6]

 (iii) Given that  
∞#

r =N+1
 

2
r(r + 2) = 11

30, find the value of N. [4]
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1	 The matrix A is given by A = 
a
1

1
4

d n , where a ≠ 1
4, and I denotes the 2 × 2 identity matrix. Find

	 (i)	 2A – 3I, [3]

	 (ii)	 A–1. [2]

2	 Find ( 1)( 1),r r
r

n

1

- +
=

/  giving your answer in a fully factorised form. [6]

3	 The complex number 2 – i is denoted by z.

	 (i)	 Find z  and arg z. [2]

	 (ii)	 Given that az + bz* = 4 – 8i, find the values of the real constants a and b. [5]

4	 The quadratic equation x2 + x + k = 0 has roots a and b.

	 (i)	 Use the substitution x = 2u + 1 to obtain a quadratic equation in u. [2]

	 (ii)	 Hence, or otherwise, find the value of 1 1
2 2

a b- -d dn n in terms of k. [2]

5	 By using the determinant of an appropriate matrix, find the values of λ for which the simultaneous equations

3x + 2y + 4z = 5,
  λy +  z = 1,
 x + λy + λz = 4,

	 do not have a unique solution for x, y and z. [6]
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9	 (i)	 Show that (ab + bc + ca)2 ≡ a2b2 + b2c2 + c2a2 + 2abc(a + b + c). [3]

	 (ii)	 It is given that a, b and c are the roots of the cubic equation x3 + px2 – 4x + 3 = 0,

	 	 where p is a constant. Find the value of 1 1 1
2 2 2a b c
+ +  in terms of p. [5]

10	 The sequence u1, u2, u3, ... is defined by u1 = 2 and un+1 = u
u

1 n

n

+
 for n  1.

	 (i)	 Find u2 and u3, and show that u4 = 2
7. [3]

	 (ii)	 Hence suggest an expression for un. [2]

	 (iii)	 Use induction to prove that your answer to part (ii) is correct. [5]
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7	 (i)	 Find the matrix that represents a rotation through 90° clockwise about the origin. [2]

	 (ii)	 Find the matrix that represents a reflection in the x-axis. [2]

	 (iii)	 Hence find the matrix that represents a rotation through 90° clockwise about the origin, followed by a 
reflection in the x-axis. [2]

	 (iv)	 Describe a single	transformation that is represented by your answer to part (iii). [2]

8	 The cubic equation kx3 + 6x2 + x – 3 = 0 , where k is a non-zero constant, has roots a, b and c.

	 Find the value of (a + 1)(b + 1) + (b + 1)(c + 1) + (c + 1)(a + 1) in terms of k. [6]

9	 (i)	 Show that ( ) ( )r r r r3 1
1

3 2
1

3 1 3 2
3/

-
-

+ - +
 . [2]

	 (ii)	 Hence show that ( )( ) ( ) n
n

r r 2 3 13 1 3 2
1

r

n

1

2

=
+- +

=

/  . [6]

10	 The matrix A is given by A = 
a
1
4

2
3
1

1
2
1

f p .
	 (i)	 Find the value of a for which A is singular. [5]

	 (ii)	 Given that A is non-singular, find A–1 and hence solve the equations

     

ax + 2y +  z = 1,
 x + 3y + 2z = 2,
4x +  y +  z = 3.

	 [7]
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